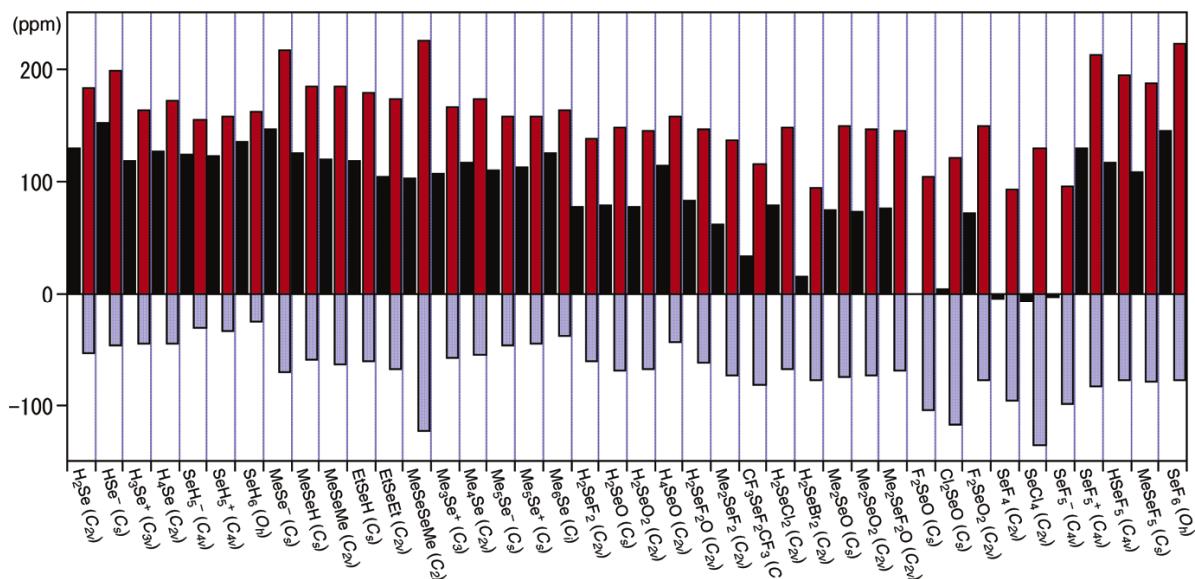


Relativistic Effect on ⁷⁷Se NMR Chemical Shifts of Various Selenium Species in the Framework of Zeroth-Order Regular Approximation

S. Hayashi, Y. Katsura, and W. Nakanishi*


Department of Material Science and Chemistry, Faculty of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan; E-mail: hayashi3@sys.wakayama-u.ac.jp

The relativistic effect on absolute magnetic shielding tensors ($\sigma(N)$) became to evaluate successfully under the zeroth-order regular approximation (ZORA) level [1]. Eq 1 explains the outline briefly [2], where $V(\mathbf{r})$ is the effective Kohn-Sham potential in external magnetic field \mathbf{B} within the DFT theory, σ are the Pauli matrices, and c is the speed of light. π and $K(\mathbf{r})$ are given by eq 2. The first two terms in eq 1 form the basis of the scalar relativistic approximation and the third term represents spin-orbit coupling. As shown in eq 3, $\sigma^t(N)$ are expressed as the sum of $\sigma^d(N)$, $\sigma^p(N)$, and $\sigma^{so}(N)$ (the contributions from the spin-orbit interaction terms), if evaluated at the spin-orbit ZORA relativistic level. $\sigma^d(N) + \sigma^p(N)$ ($= \sigma^{d+p}(N)$) in eq 3 correspond to the first two terms in eq 1, whereas $\sigma^{so}(N)$ originate inherently as the spin-orbit effect.

$$H_{ZORA} = V(\mathbf{r}) + \pi(K(\mathbf{r})/2)\pi + (K^2(\mathbf{r})/4c^2)\sigma \cdot [\nabla V(\mathbf{r}) \times \mathbf{p}] - K(\mathbf{r})/c)\sigma \cdot \mathbf{p} \quad (1)$$

$$\pi = \mathbf{p} + (1/c)\mathbf{A}(\mathbf{r}), \quad \mathbf{B} = \nabla \times \mathbf{A}(\mathbf{r}); \quad K(\mathbf{r}) = \{1 - (V(\mathbf{r})/2c^2)\}^{-1} \quad (2)$$

$$\sigma^t(N) = \sigma^d(N) + \sigma^p(N) + \sigma^{so}(N) = \sigma^{d+p}(N) + \sigma^{so}(N) \quad (3)$$

Fig. 1 Relativistic effect on $\sigma(\text{Se})$ for various selenium compounds: black, blue, and red stand for the total term ($\Delta\sigma^t(\text{Se})_{\text{Rlt-so}} = \Delta\sigma^{d+p}(\text{Se})_{\text{Rlt-so}} + \sigma^{so}(\text{Se})_{\text{Rlt-so}}$), the scalar term ($\Delta\sigma^{d+p}(\text{Se})_{\text{Rlt-so}}$), and the spin-orbit term ($\sigma^{so}(\text{Se})_{\text{Rlt-so}}$), respectively.

The relativistic effect on $\sigma(\text{Se})$ are explicitly evaluated for various selenium species with the DFT(BLYP)-GIAO method. Calculations are performed under relativistic and nonrelativistic conditions with the Slater-type basis sets in ADF 2010 in the framework of ZORA, employing the optimized structures under nonrelativistic conditions at B3LYP of Gaussian 03. Figure 1 shows the results. Details will be discussed in the presentation.

[1] *Calculation of NMR and EPR Parameters; Theory and Applications* (Eds.: M. Kaupp, M. Bühl, V.G. Malkin), Wiley-VCH, Weinheim, 2004.
 [2] S.K. Wolff, T. Ziegler, *J. Chem. Phys.* **1998**, *109*, 895–905; S.K. Wolff, T. Ziegler, E. van Lenthe, E.J. Baerends, *J. Chem. Phys.* **1999**, *110*, 7689–7698; J.R. Yates, C.J. Pickard, M.C. Payne, F. Mauri, *J. Chem. Phys.* **2003**, *118*, 5746–5753.